Nonstandard Analysis as a computational foundation

Sam Sanders

SOTFOMIII, Vienna, Sept. 2015
Computational Foundation?

Univalent foundations of mathematics is Vladimir Voevodsky’s new program for a comprehensive, *computational* foundation for mathematics based on the homotopical interpretation of type theory (aka HOTT).
Computational Foundation?

Univalent foundations of mathematics is

Vladimir Voevodsky’s new program for a comprehensive, computational foundation for mathematics based on the homotopical interpretation of type theory (aka HOTT).

Subliminal message: ZFC, the ‘old’ foundation of mathematics is not ‘computational’, and therefore HOTT is better.
Computational Foundation?

Univalent foundations of mathematics is
Vladimir Voevodsky’s new program for a comprehensive, computational foundation for mathematics based on the homotopical interpretation of type theory (aka HOTT).

Subliminal message: ZFC, the ‘old’ foundation of mathematics is not ‘computational’, and therefore HOTT is better.

In this talk, we show that Nonstandard Analysis provides ZFC with a ‘computational’ foundation.
Computational Foundation?

What is a ‘computational’ foundation?
Computational Foundation?

What is a ‘computational’ foundation?

NOT: a computer implementation of mathematics:
Computational Foundation?

What is a ‘computational’ foundation?

NOT: a computer implementation of mathematics: Wiedijk claims that **Mizar** has the largest library; Mizar is based on classical logic and an extension of ZFC.
Computational Foundation?

What is a ‘computational’ foundation?

NOT: a computer implementation of mathematics: Wiedijk claims that Mizar has the largest library; Mizar is based on classical logic and an extension of ZFC.

Computational foundation: HOTT is based on Martin-Löf’s intuitionistic type theory:
Computational Foundation?

What is a ‘computational’ foundation?

NOT: a computer implementation of mathematics: Wiedijk claims that **Mizar** has the largest library; Mizar is based on classical logic and an extension of ZFC.

Computational foundation: **HOTT** is based on **Martin-Löf’s intuitionistic type theory:** **BHK-interpretation** of constructive mathematics.
Computational Foundation?

What is a ‘computational’ foundation?

NOT: a computer implementation of mathematics: Wiedijk claims that **Mizar** has the largest library; Mizar is based on classical logic and an extension of ZFC.

Computational foundation: **HOTT** is based on Martin-Löf’s intuitionistic type theory: BHK-interpretation of constructive mathematics.

We show that Nonstandard Analysis provides a *similarly constructive* interpretation of mathematics. (Bishop and Connes)
A little test...\[\[
\text{Which statement has } \textbf{the most constructive/numerical content?}\]
A little test...

Which statement has the most constructive/numerical content?

\[(\forall x, y \in [0, 1]) [x \approx y \rightarrow f(x) \approx f(y)] \downarrow \]

\[(\forall \pi, \pi' \in P([0, 1])) (\|\pi\|, \|\pi'\| \approx 0 \rightarrow S_\pi(f) \approx S_{\pi'}(f))]\]
A little test...

Which statement has the most constructive/numerical content?

\[
(\forall x, y \in [0, 1])[x \approx y \rightarrow f(x) \approx f(y)]
\]

\[
\downarrow
\]

\[
(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \rightarrow S_\pi(f) \approx S_{\pi'}(f))
\]

OR

\[
(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{g(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k})
\]

\[
\downarrow
\]

\[
(\forall k')(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < \frac{1}{s(g, k')}) \rightarrow |S_\pi(f) - S_{\pi'}(f)| \leq \frac{1}{k'}
\]
A little test...

Which statement has the most constructive/numerical content?

\[(\forall x, y \in [0, 1])[x \approx y \rightarrow f(x) \approx f(y)]\]
\[
\downarrow
\]

\[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \rightarrow S_{\pi}(f) \approx S_{\pi'}(f))\],

OR

\[(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{g(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k})\]
\[
\downarrow
\]

\[(\forall k')(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \leq \frac{1}{s(g,k')} \rightarrow |S_{\pi}(f) - S_{\pi'}(f)| \leq \frac{1}{k'})\],

As we will see: the first one! (up to finitistic manipulation)
Means to an end

Technical aim: To show that proofs of theorems of PURE Nonstandard Analysis can be mined to produce effective theorems not involving NSA, and vice versa.
Means to an end

Technical aim: To show that proofs of theorems of PURE Nonstandard Analysis can be mined to produce effective theorems not involving NSA, and vice versa.

PURE Nonstandard Analysis = only involving the nonstandard definitions (of continuity, compactness, diff., Riemann int., ...)
Means to an end

Technical aim: To show that proofs of theorems of PURE Nonstandard Analysis can be mined to produce *effective* theorems not involving NSA, and *vice versa*.

PURE Nonstandard Analysis = only involving the nonstandard definitions (of continuity, compactness, diff., Riemann int., ...)

Effective theorem = Theorem from constructive/computable analysis OR an (explicit) equivalence from Reverse Math.
Means to an end

Technical aim: To show that proofs of theorems of PURE Nonstandard Analysis can be mined to produce effective theorems not involving NSA, and vice versa.

PURE Nonstandard Analysis = only involving the nonstandard definitions (of continuity, compactness, diff., Riemann int., ...)

Effective theorem = Theorem from constructive/computable analysis OR an (explicit) equivalence from Reverse Math.

Vice versa? Certain effective theorems, called Herbrandisations, imply the nonstandard theorem from which they were obtained!
Means to an end

Technical aim: To show that proofs of theorems of **PURE Nonstandard Analysis** can be mined to produce **effective theorems** not involving **NSA**, and **vice versa**.

PURE Nonstandard Analysis = only involving the **nonstandard** definitions (of continuity, compactness, diff., Riemann int., ...)

Effective theorem = Theorem from constructive/computable analysis OR an (explicit) equivalence from Reverse Math.

Vice versa? Certain effective theorems, called **Herbrandisations**, imply the nonstandard theorem from which they were obtained!

Motivation: Many authors have observed the ‘constructive nature’ of the practice of NSA. (Horst Osswald’s **local constructivity**).
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965):
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $\ast M \supseteq M$, a nonstandard model of M (using free ultrafilter).
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $^*M \supseteq M$, a nonstandard model of M (using free ultrafilter).
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $^* M \supseteq M$, a nonstandard model of M (using free ultrafilter).
Introducing Nonstandard Analysis

Robinson’s **semantic** approach (1965): For a given structure M, build $\ast M \supseteq M$, a nonstandard model of M (using free ultrafilter).

\[\mathbb{N} = \{0, 1, 2, \ldots\}\]

\[\ast \mathbb{N} = \{0, 1, 2, \ldots, \omega, \omega + 1, \ldots\}\]
Introducing Nonstandard Analysis

Robinson’s **semantic** approach (1965): For a given structure M, build $\mathcal{M} \supseteq M$, a nonstandard model of M (using free ultrafilter).

$\mathcal{M} = \{0,1,2,\ldots, \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\}$

$\mathbb{N} = \{0,1,2,\ldots\}$

\mathcal{N} contains the nonstandard objects not in \mathbb{N}
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $^*M \supseteq M$, a nonstandard model of M (using free ultrafilter).
Robinson’s semantic approach (1965): For a given structure M, build $\ast M \supseteq M$, a nonstandard model of M (using free ultrafilter).
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $^\ast M \supseteq M$, a nonstandard model of M (using free ultrafilter).

$^\ast \mathbb{N} = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\}$

$^\ast X \in ^\ast M$

X contains the standard objects

X contains the nonstandard objects not in \mathbb{N}

X contains the standard objects

star morphism

$\forall X \in M$
Robinson’s *semantic* approach (1965): For a given structure M, build $^*M \supseteq M$, a nonstandard model of M (using free ultrafilter).

- $^\ast \mathbb{N} = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\}$
- $^*X \in ^*M$ contains the *standard* objects
- $X \subseteq M$ contains the *nonstandard* objects
Robinson’s **semantic** approach (1965): For a given structure M, build $\ast M \supset M$, a nonstandard model of M (using free ultrafilter).

Three important properties connecting M and $\ast M$:
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $^{*}M$ ⊇ M, a nonstandard model of M (using free ultrafilter).

$^{*}M$ ⊇ M

$^{*}\mathbb{N} = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\}$

nonstandard objects not in \mathbb{N}

$^{*}X \in ^{*}M$

X contains the standard objects

$^{*}X \setminus X$ contains the nonstandard objects

Three important properties connecting M and $^{*}M$:

1) Transfer $M \models \varphi \iff ^{*}M \models ^{*}\varphi$ $(\varphi \in L_{ZFC})$
Introducing Nonstandard Analysis

Robinson’s semantic approach (1965): For a given structure M, build $\mathcal{N} = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\}$, a nonstandard model of M (using free ultrafilter).

\mathcal{N} contains the standard objects
$\mathcal{N} \cup \{\text{nonstandard objects not in } \mathcal{N}\}$

Three important properties connecting M and \mathcal{N}:
1) Transfer $M \models \varphi \iff \mathcal{N} \models \ast \varphi$ ($\varphi \in L_{ZFC}$)
2) Standard Part $(\forall x \in \mathcal{N})(\exists y \in M)(\forall z \in M)(z \in x \iff z \in y)$
Introducing Nonstandard Analysis

Robinson’s **semantic** approach (1965): For a given structure M, build $^*M \supseteq M$, a nonstandard model of M (using free ultrafilter).

Three important properties connecting M and *M:
1) Transfer $M \models \varphi \iff ^*M \models ^*\varphi$ ($\varphi \in L_{ZFC}$)
2) Standard Part $(\forall x \in ^*M)(\exists y \in M)(\forall z \in M)(z \in x \iff z \in y)$ (reverse of *)
Introducing Nonstandard Analysis

Robinson’s **semantic** approach (1965): For a given structure \(M \), build \(*M \supseteq M \), a nonstandard model of \(M \) (using free ultrafilter).

\[*\mathbb{N} = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \omega + 3, \ldots\} \]

Nonstandard objects not in \(\mathbb{N} \)

\[X \in M \quad \text{star morphism} \quad *X \in *M \]

\(X \) contains the **standard** objects

\(*X \setminus X \) contains the **nonstandard** objects

Three important properties connecting \(M \) and \(*M \):
1) Transfer \(M \models \varphi \iff *M \models *\varphi \quad (\varphi \in L_{ZFC}) \)
2) Standard Part \((\forall x \in *M)(\exists y \in M)(\forall z \in M)(z \in x \iff z \in y)\) (reverse of *)
3) Idealization/Saturation . . .
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}.
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists^{st} x)$ and $(\forall^{st} y)$ for $(\exists x)(\text{st}(x) \land \ldots)$ and $(\forall y)(\text{st}(y) \rightarrow \ldots)$.
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists^{st} x)$ and $(\forall^{st} y)$ for $\exists x (\text{st}(x) \land \ldots)$ and $\forall y (\text{st}(y) \rightarrow \ldots)$. A formula is internal if it does not contain ‘st’; external otherwise.
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists^{st} x)$ and $(\forall^{st} y)$ for $(\exists x)(\text{st}(x) \land \ldots)$ and $(\forall y)(\text{st}(y) \rightarrow \ldots)$. A formula is internal if it does not contain ‘st’; external otherwise.

Internal Set Theory IST is ZFC plus the new axioms:
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate $st(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists^{st} x)$ and $(\forall^{st} y)$ for $(\exists x)(st(x) \land \ldots)$ and $(\forall y)(st(y) \rightarrow \ldots)$. A formula is internal if it does not contain ‘st’; external otherwise.

Internal Set Theory IST is ZFC plus the new axioms:

Transfer: $(\forall^{st} x) \varphi(x, t) \rightarrow (\forall x) \varphi(x, t)$ for internal φ and standard t.
Introducing Nonstandard Analysis

Nelson’s **Internal Set Theory** is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists \text{st} x)$ and $(\forall \text{st} y)$ for $(\exists x)(\text{st}(x) \land \ldots)$ and $(\forall y)(\text{st}(y) \rightarrow \ldots)$. A formula is **internal** if it does not contain ‘st’; **external** otherwise.

Internal Set Theory **IST** is ZFC plus the new axioms:

Transfer: $(\forall \text{st} x)\varphi(x, t) \rightarrow (\forall x)\varphi(x, t)$ for internal φ and standard t.

Standard Part: $(\forall x)(\exists \text{st} y)(\forall \text{st} z)(z \in x \leftrightarrow z \in y)$.
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate \(st(x) \) read ‘\(x \) is standard’ to \(L_{ZFC} \). We write \((\exists^{st} x) \) and \((\forall^{st} y) \) for \((\exists x)(st(x) \land \ldots) \) and \((\forall y)(st(y) \rightarrow \ldots) \). A formula is internal if it does not contain ‘\(st \)’; external otherwise.

Internal Set Theory IST is ZFC plus the new axioms:

Transfer: \((\forall^{st} x)\varphi(x, t) \rightarrow (\forall x)\varphi(x, t) \) for internal \(\varphi \) and standard \(t \).

Standard Part: \((\forall x)(\exists^{st} y)(\forall^{st} z)(z \in x \leftrightarrow z \in y) \).

Idealization: \(\ldots \) (push quantifiers \((\forall^{st} x) \) and \((\exists^{st} y) \) to the front).
Introducing Nonstandard Analysis

Nelson’s Internal Set Theory is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists^{st} x)$ and $(\forall^{st} y)$ for $(\exists x)(\text{st}(x) \land \ldots)$ and $(\forall y)(\text{st}(y) \rightarrow \ldots)$. A formula is internal if it does not contain ‘st’; external otherwise.

Internal Set Theory IST is ZFC plus the new axioms:

Transfer: $(\forall^{st} x) \varphi(x, t) \rightarrow (\forall x) \varphi(x, t)$ for internal φ and standard t.

Standard Part: $(\forall x)(\exists^{st} y)(\forall^{st} z)(z \in x \leftrightarrow z \in y)$.

Idealization:… (push quantifiers $(\forall^{st} x)$ and $(\exists^{st} y)$ to the front)

Conservation: ZFC and IST prove the same internal sentences.
Introducing Nonstandard Analysis

Nelson’s **Internal Set Theory** is a syntactic approach to Nonstandard Analysis.

Add a new predicate $\text{st}(x)$ read ‘x is standard’ to L_{ZFC}. We write $(\exists^{st} x)$ and $(\forall^{st} y)$ for $(\exists x)(\text{st}(x) \land \ldots)$ and $(\forall y)(\text{st}(y) \rightarrow \ldots)$. A formula is internal if it does not contain ‘st’; external otherwise.

Internal Set Theory **IST** is ZFC plus the new axioms:

Transfer: $(\forall^{st} x)\varphi(x, t) \rightarrow (\forall x)\varphi(x, t)$ for internal φ and standard t.

Standard Part: $(\forall x)(\exists^{st} y)(\forall^{st} z)(z \in x \leftrightarrow z \in y)$.

Idealization:… (push quantifiers $(\forall^{st} x)$ and $(\exists^{st} y)$ to the front).

Conservation: ZFC and IST prove the same internal sentences. And analogous results for fragments of IST.
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

$E-PA^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

$E-PA^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.

I is Nelson’s idealisation axiom in the language of finite types.
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

E-PA$^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.

I is Nelson’s idealisation axiom in the language of finite types.

HAC_{int} is a weak version of Nelson’s Standard Part axiom:
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

$E-PA^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.

I is Nelson’s idealisation axiom in the language of finite types.

HAC_{int} is a weak version of Nelson’s Standard Part axiom:

$$(\forall^{\text{st}}x^\rho)(\exists^{\text{st}}y^\tau)\varphi(x, y) \to (\exists^{\text{st}}f^{\rho\to\tau^*})(\forall^{\text{st}}x^\rho)(\exists y^\tau \in f(x))\varphi(x, y)$$

Only a finite sequence of witnesses; φ is internal.
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

$E-PA^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.

I is Nelson’s idealisation axiom in the language of finite types.

HAC_{int} is a weak version of Nelson’s Standard Part axiom:

\[(\forall^{st} x^\rho)(\exists^{st} y^\tau) \varphi(x, y) \rightarrow (\exists^{st} f^\rho \rightarrow \tau^\ast)(\forall^{st} x^\rho)(\exists y^\tau \in f(x)) \varphi(x, y)\]

Only a finite sequence of witnesses; φ is internal.

No Transfer
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

$E-PA^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.

I is Nelson’s idealisation axiom in the language of finite types.

HAC_{int} is a weak version of Nelson’s Standard Part axiom:

$$(\forall^{st} x^\rho)(\exists^{st} y^T)\varphi(x, y) \rightarrow (\exists^{st} f^{\rho \rightarrow T^*})(\forall^{st} x^\rho)(\exists y^T \in f(x))\varphi(x, y)$$

Only a finite sequence of witnesses; φ is internal.

No Transfer

$P := E-PA^\omega + I + HAC_{int}$ is a conservative extension of $E-PA^\omega$.
A fragment based on Gödel’s T

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

$E-PA^\omega$ is Peano arithmetic in all finite types with the axiom of extensionality.

I is Nelson’s idealisation axiom in the language of finite types.

HAC_{int} is a weak version of Nelson’s Standard Part axiom:

\[
\left(\forall^{\text{st}} x^\rho\right)\left(\exists^{\text{st}} y^\tau\right) \varphi(x, y) \rightarrow \left(\exists^{\text{st}} f^{\rho\rightarrow \tau^*}\right)\left(\forall^{\text{st}} x^\rho\right)\left(\exists y^\tau \in f(x)\right) \varphi(x, y)
\]

Only a finite sequence of witnesses; φ is internal.

No Transfer

$P := E-PA^\omega + I + HAC_{\text{int}}$ is a conservative extension of $E-PA^\omega$.

Same for nonstandard version H of $E-HA^\omega$ and intuitionistic logic.
A new computational aspect of NSA
A new computational aspect of NSA

TERM EXTRACTION
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

If system P (resp. H) proves \((\forall^{st} x)(\exists^{st} y) \varphi(x, y)\) (\(\varphi\) internal)

OBSERVATION: Nonstandard definitions (of continuity, compactness, Riemann int., etc) can be brought into the 'normal form' \((\forall^{st} x)(\exists^{st} y) \varphi(x, y)\).

Such normal forms are closed under mode ponens (in both P and H)

All theorems of PURE Nonstandard Analysis can be mined using the term extraction result (of P and H).
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

If system P (resp. H) proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\) (\(\varphi\) internal)

then a term \(t\) can be extracted from this proof such that \(E-PA^\omega\) (resp. \(E-HA^\omega\)) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\).

(Compare to Gödel-Gentzen and H. Friedman translation for \(\Pi^0_2\)-formulas)

OBSERVATION: Nonstandard definitions (of continuity, compactness, Riemann int., etc) can be brought into the 'normal form' \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\).

Such normal forms are closed under modes ponens (in both P and H)

All theorems of PURE Nonstandard Analysis can be mined using the term extraction result (of P and H).
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

If system P (resp. H) proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\) (\(\varphi\) internal)

then a term \(t\) can be extracted from this proof such that \(E-PA^{\omega}\) (resp. \(E-HA^{\omega}\)) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\).

(Compare to Gödel-Gentzen and H. Friedman translation for \(\Pi^0_2\)-formulas)
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

If system P (resp. H) proves \((\forall^{st} x)(\exists^{st} y) \varphi(x, y)\) (\(\varphi\) internal)
then a term \(t\) can be extracted from this proof such that \(E-PA^\omega\) (resp. \(E-HA^\omega\)) proves \((\forall x)(\exists y \in t(x)) \varphi(x, y)\).

(Compare to Gödel-Gentzen and H. Friedman translation for \(\Pi^0_2\)-formulas)

OBSERVATION: Nonstandard definitions (of continuity, compactness, Riemann int., etc) can be brought into the ‘normal form’ \((\forall^{st} x)(\exists^{st} y) \varphi(x, y)\).
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

If system P (resp. H) proves \((\forall^{st}x)(\exists^{st}y)\varphi(x, y)\) (\(\varphi\) internal)

then a term \(t\) can be extracted from this proof such that E-PA\(^\omega\) (resp. E-HA\(^\omega\)) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\).

(Compare to Gödel-Gentzen and H. Friedman translation for \(\Pi^0_2\)-formulas)

OBSERVATION: Nonstandard definitions (of continuity, compactness, Riemann int., etc) can be brought into the ‘normal form’ \((\forall^{st}x)(\exists^{st}y)\varphi(x, y)\). Such normal forms are closed under modes ponens (in both P and H)
A new computational aspect of NSA

TERM EXTRACTION

van den Berg, Briseid, Safarik, A functional interpretation of nonstandard arithmetic, APAL2012

If system P (resp. H) proves \((\forall^{st} x)(\exists^{st} y) \varphi(x, y)\) (\(\varphi\) internal)

then a term \(t\) can be extracted from this proof such that \(E-PA^\omega\) (resp. \(E-HA^\omega\)) proves \((\forall x)(\exists y \in t(x)) \varphi(x, y)\).

(Compare to Gödel-Gentzen and H. Friedman translation for \(\Pi_2^0\)-formulas)

OBSERVATION: Nonstandard definitions (of continuity, compactness, Riemann int., etc) can be brought into the ‘normal form’ \((\forall^{st} x)(\exists^{st} y) \varphi(x, y)\). Such normal forms are closed under modes ponens (in both P and H)

All theorems of PURE Nonstandard Analysis can be mined using the term extraction result (of P and H).
The unreasonable effectiveness of NSA

Example I: Continuity.
The unreasonable effectiveness of NSA

Example I: Continuity.

From a proof that f is nonstandard uniformly continuous in P, i.e.

$$(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y)),$$
The unreasonable effectiveness of NSA

Example I: Continuity.

From a proof that \(f \) is nonstandard uniformly continuous in \(P \), i.e.

\[
(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y)),
\]

we can extract a term \(t^1 \) (from Gödel’s T) such that \(\text{E-PA}^{\omega} \) proves

\[
(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{t(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k}),
\]
The unreasonable effectiveness of NSA

Example I: Continuity.

From a proof that f is nonstandard uniformly continuous in P, i.e.

$$(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y)),$$ \hspace{1cm} (1)

we can extract a term t^1 (from Gödel’s T) such that $E\text{-PA}^\omega$ proves

$$(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{t(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k}),$$ \hspace{1cm} (2)

AND VICE VERSA: $E\text{-PA}^\omega \vdash (2)$ implies $P \vdash (1)$.

The unreasonable effectiveness of NSA

Example I: Continuity.

From a proof that \(f \) is nonstandard uniformly continuous in \(P \), i.e.

\[
(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y)), \quad (1)
\]

we can extract a term \(t^1 \) (from Gödel’s T) such that \(\text{E-PA}^\omega \) proves

\[
(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{t(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k}), \quad (2)
\]

AND VICE VERA: \(\text{E-PA}^\omega \vdash (2) \) implies \(P \vdash (1) \).

(2) is the notion of continuity (with a modulus \(t \)) used in constructive analysis and computable math (Bishop, etc).
The unreasonable effectiveness of NSA

Example I: Continuity.

From a proof that f is nonstandard uniformly continuous in P, i.e.

$$(\forall x, y \in [0,1])(x \approx y \rightarrow f(x) \approx f(y)),$$ \hspace{1cm} (1)

we can extract a term t^1 (from Gödel’s T) such that $E\text{-}PA^\omega$ proves

$$(\forall k^0)(\forall x, y \in [0,1])(|x - y| < \frac{1}{t(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k}),$$ \hspace{1cm} (2)

AND VICE VERSA: $E\text{-}PA^\omega \vdash (2)$ implies $P \vdash (1)$.

(2) is the notion of continuity (with a modulus t) used in constructive analysis and computable math (Bishop, etc).

Et pour les constructivists: la même chose!
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

\[(\forall f : \mathbb{R} \to \mathbb{R})[(\forall x, y \in [0, 1])[x \approx y \to f(x) \approx f(y)] \downarrow \]

\[(\forall \pi, \pi' \in P([0, 1]))(||\pi||, ||\pi'|| \approx 0 \to S_\pi(f) \approx S_{\pi'}(f))\],

we can extract a term s_2 such that for $f : \mathbb{R} \to \mathbb{R}$ and modulus g_1:

\[(\forall k_0)(\forall x, y \in [0, 1])(|x - y| < 1 \to |f(x) - f(y)| < 1)\]

\[(\forall k') (\forall \pi, \pi' \in P([0, 1]))(||\pi||, ||\pi'|| < 1 \to |S_\pi(f) - S_{\pi'}(f)| \leq 1)\] (3)

is provable in $E-\text{PA}_\omega$.

(and the same for $E-\text{HA}_\omega$)
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

$$(\forall f : \mathbb{R} \to \mathbb{R})(\forall x, y \in [0, 1])[x \approx y \rightarrow f(x) \approx f(y)]$$

we can extract a term s^2 such that for $f : \mathbb{R} \to \mathbb{R}$ and modulus g^1:

$$(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{g(k)} \rightarrow |f(x) - f(y)| < \frac{1}{k}) \tag{3}$$

$$\downarrow$$

$$(\forall k')(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < \frac{1}{s(g, k')} \rightarrow |S_{\pi}(f) - S_{\pi'}(f)| \leq \frac{1}{k'})$$
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration

From a proof that nonstandard uniformly continuity implies nonstandard
Riemann integration in P, i.e.

\[(\forall f : \mathbb{R} \to \mathbb{R}) \left[(\forall x, y \in [0, 1]) [x \approx y \to f(x) \approx f(y)] \right] \]

\[
\downarrow
\]

\[(\forall \pi, \pi' \in P([0, 1])) (\|\pi\|, \|\pi'\| \approx 0 \to S_{\pi}(f) \approx S_{\pi'}(f)) \],

we can extract a term \(s^2 \) such that for \(f : \mathbb{R} \to \mathbb{R} \) and modulus \(g^1: \)

\[(\forall k^0) (\forall x, y \in [0, 1]) (|x - y| < \frac{1}{g(k)} \to |f(x) - f(y)| < \frac{1}{k}) \quad (3) \]

\[
\downarrow
\]

\[(\forall k') (\forall \pi, \pi' \in P([0, 1])) (\|\pi\|, \|\pi'\| < \frac{1}{s(g, k')} \to |S_{\pi}(f) - S_{\pi'}(f)| \leq \frac{1}{k'}) \]

is provable in E-PA\(^\omega\).
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

$$(\forall f : \mathbb{R} \to \mathbb{R}) \left[(\forall x, y \in [0, 1])[x \approx y \to f(x) \approx f(y)] \right]$$

$$\downarrow$$

$$[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \to S_\pi(f) \approx S_{\pi'}(f))],$$

we can extract a term s^2 such that for $f : \mathbb{R} \to \mathbb{R}$ and modulus g^1:

$$(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{g(k)} \to |f(x) - f(y)| < \frac{1}{k}) \quad (3)$$

$$\downarrow$$

$$(\forall k^0)(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < \frac{1}{s(g, k') \to |S_\pi(f) - S_{\pi'}(f)| \leq \frac{1}{k'} })$$

is provable in $E-PA^\omega$. (and the same for $E-HA^\omega$)
The unreasonable effectiveness of NSA

Example II: Continuity implies Riemann integration

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

\[(\forall f : \mathbb{R} \to \mathbb{R}) \left[(\forall x, y \in [0, 1])[x \approx y \to f(x) \approx f(y)] \right] \]

\[\downarrow \]

\[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \to S_\pi(f) \approx S_{\pi'}(f)) \],

we can extract a term \(s^2 \) such that for \(f : \mathbb{R} \to \mathbb{R} \) and modulus \(g^1 \):

\[(\forall k^0)(\forall x, y \in [0, 1])(|x - y| < \frac{1}{g(k)} \to |f(x) - f(y)| < \frac{1}{k}) \quad (3) \]

\[\downarrow \]

\[(\forall k')(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < \frac{1}{s(g, k')} \to |S_\pi(f) - S_{\pi'}(f)| \leq \frac{1}{k'}) \]

is provable in E-PA\(^\omega\). (and the same for E-HA\(^\omega\))

But (3) is the theorem expressing continuity implies Riemann integration from constructive analysis and computable math.
Explicit Reverse Mathematics

Example III: The monotone convergence theorem
Explicit Reverse Mathematics

Example III: The monotone convergence theorem

From a proof in P of the following equivalence:

\[(\forall^{\text{st}} f^1)[(\exists n) f(n) = 0 \rightarrow (\exists^{\text{st}} m) f(m) = 0]\]

(\(\Pi^0_1\)-TRANS)

\[\iff\]

Every standard monotone sequence in \([0, 1]\) nonstandard converges
Explicit Reverse Mathematics

Example III: The monotone convergence theorem

From a proof in P of the following equivalence:

\[(\forall^\text{st} f^1)[(\exists^\text{st} n)f(n) = 0 \rightarrow (\exists^\text{st} m)f(m) = 0] \quad (\Pi^0_1\text{-TRANS})\]

\[\leftrightarrow\]

Every standard monotone sequence in \([0, 1]\) nonstandard converges

two terms \(u, v\) can be extracted such that \(E-\text{PA}^\omega\) proves
Explicit Reverse Mathematics

Example III: The monotone convergence theorem

From a proof in P of the following equivalence:

\[(\forall^{st} f^1) [(\exists n) f(n) = 0 \rightarrow (\exists^* m) f(m) = 0] \quad (\Pi^0_1\text{-TRANS})\]

\[\leftrightarrow\]

Every standard monotone sequence in \([0, 1]\) nonstandard converges

two terms \(u, v\) can be extracted such that \(E-PA^\omega\) proves

If \(\Xi^2\) is the Turing jump functional, then \(u(\Xi)\) computes the rate of convergence of any monotone sequence in \([0, 1]\).
Explicit Reverse Mathematics

Example III: The monotone convergence theorem

From a proof in P of the following equivalence:

\((\forall^{st} f^1)[(\exists n)f(n) = 0 \rightarrow (\exists^{st} m)f(m) = 0]\) \hspace{1cm} (\Pi^0_1\text{-TRANS})

\leftrightarrow

Every standard monotone sequence in \([0, 1]\) nonstandard converges

two terms \(u, v\) can be extracted such that \(EPA^\omega\) proves

If \(\Xi^2\) is the Turing jump functional, then \(u(\Xi)\) computes the rate of convergence of any monotone sequence in \([0, 1]\).

If \(\psi^1\rightarrow^1\) computes the rate of convergence of any monotone sequence in \([0, 1]\), then \(v(\psi)\) is the Turing jump functional.
Explicit Reverse Mathematics

Example III: The monotone convergence theorem

From a proof in P of the following equivalence:

\[(\forall^{\text{st}} f^1)(\exists n)\ f(n) = 0 \rightarrow (\exists^{\text{st}} m)\ f(m) = 0\] \hspace{1cm} (\Pi^0_1\text{-TRANS})

\[\iff\]

Every standard monotone sequence in \([0, 1]\) nonstandard converges
two terms \(u, v\) can be extracted such that \(E\text{-PA}^\omega\) proves

If \(\Xi^2\) is the Turing jump functional, then \(u(\Xi)\) computes the rate
of convergence of any monotone sequence in \([0, 1]\).

If \(\Psi^{1\rightarrow1}\) computes the rate of convergence of any monotone
sequence in \([0, 1]\), then \(v(\Psi)\) is the Turing jump functional.

The above is the EXPLICIT equivalence \(\text{ACA}_0 \iff \text{MCT}\).
Explicit Reverse Mathematics

Example III: The monotone convergence theorem

From a proof in P of the following equivalence:

\[(\forall^{\text{st}} f^1)[(\exists n)f(n) = 0 \rightarrow (\exists^{\text{st}} m)f(m) = 0]\]

\[(\Pi^0_1\text{-TRANS})\]

\[\leftrightarrow\]

Every standard monotone sequence in \([0, 1]\) nonstandard converges

two terms \(u, v\) can be extracted such that E-\(\text{PA}^\omega\) proves

If \(\Xi^2\) is the Turing jump functional, then \(u(\Xi)\) computes the rate of convergence of any monotone sequence in \([0, 1]\).

If \(\Psi^{1\rightarrow 1}\) computes the rate of convergence of any monotone sequence in \([0, 1]\), then \(v(\Psi)\) is the Turing jump functional.

The above is the EXPLICIT equivalence ACA\(_0\) \(\leftrightarrow\) MCT. (and H?)
Explicit Reverse Mathematics

Example IV: Group Theory
Explicit Reverse Mathematics

Example IV: Group Theory

From a proof in P of the following equivalence:

\[(\forall^{st}f^1)[(\exists g^1)(\forall n)f(\overline{gn}) = 0 \rightarrow (\exists^{st} g^1)(\forall^{st} m)f(\overline{gm}) = 0] \tag{\Pi^1_1\text{-TRANS}}\]

\[\leftrightarrow\] Every standard countable abelian group is a direct sum of a standard divisible group and a standard reduced group
Explicit Reverse Mathematics

Example IV: Group Theory

From a proof in P of the following equivalence:

\[(\forall^\text{st} f^1)[(\exists g^1)(\forall n)f(\bar{g}n) = 0 \rightarrow (\exists^\text{st} g^1)(\forall^\text{st} m)f(\bar{g}m) = 0]\]

(\(\Pi^1_1\)-TRANS)

\(\leftrightarrow\) Every standard countable abelian group is a direct sum of a standard divisible group and a standard reduced group

two terms \(u, v\) can be extracted such that \(E-PA^\omega\) proves
Explicit Reverse Mathematics

Example IV: Group Theory

From a proof in P of the following equivalence:

\[(\forall^{st} f^1)[(\exists g^1)(\forall n)f(\bar{g}n) = 0 \rightarrow (\exists^{st} g^1)(\forall^{st} m)f(\bar{g}m) = 0]\]

\[(\Pi^1_1\text{-TRANS})\]

\[\leftrightarrow\] Every standard countable abelian group is a direct sum
of a standard divisible group and a standard reduced group

two terms \(u, v\) can be extracted such that E-\(\text{PA}^\omega\) proves

If \(\Xi^2\) is the Suslin functional, then \(u(\Xi)\) computes the divisible and
reduced group for countable abelian groups.
Explicit Reverse Mathematics

Example IV: Group Theory

From a proof in P of the following equivalence:

\[(\forall^{\text{st}} f^1)((\exists g^1)(\forall n)f(\overline{g}n) = 0 \rightarrow (\exists^{\text{st}} g^1)(\forall^{\text{st}} m)f(\overline{g}m) = 0]\]

\[\leftrightarrow \text{Every standard countable abelian group is a direct sum of a standard divisible group and a standard reduced group}\]

two terms \(u, \nu\) can be extracted such that E-PA\(^\omega\) proves

If \(\Xi^2\) is the Suslin functional, then \(u(\Xi)\) computes the divisible and reduced group for countable abelian groups.

If \(\Psi^{1\rightarrow1}\) computes computes the divisible and reduced group for countable abelian groups, then \(\nu(\Psi)\) is the Suslin functional.
Explicit Reverse Mathematics

Example IV: Group Theory

From a proof in P of the following equivalence:

\[(\forall^{st} f^1)[(\exists g^1)(\forall n) f(gn) = 0 \rightarrow (\exists^{st} g^1)(\forall^{st} m) f(gm) = 0]\]

\[(\Pi^1_{\mathcal{I}})-\text{TRANS}] \leftrightarrow \text{Every standard countable abelian group is a direct sum of a standard divisible group and a standard reduced group.}\]

two terms \(u, \nu\) can be extracted such that E-PA\(\omega\) proves

If \(\Xi^2\) is the Suslin functional, then \(u(\Xi)\) computes the divisible and reduced group for countable abelian groups.

If \(\Psi^{1 \rightarrow 1}\) computes the divisible and reduced group for countable abelian groups, then \(\nu(\Psi)\) is the Suslin functional.

The above is the EXPLICIT equivalence \(\Pi^1_{\mathcal{I}}\)-CA\(_0\) \(\leftrightarrow\) DIV.
The unreasonable effectiveness of NSA

Example V: Compactness
The unreasonable effectiveness of NSA

Example V: Compactness

X is nonstandard compact IFF $(\forall x \in X)(\exists^{st} y \in X)(x \approx y)$.
The unreasonable effectiveness of NSA

Example V: Compactness

X is nonstandard compact IFF $(\forall x \in X)(\exists^{st} y \in X)(x \approx y)$.

From a proof in P of the following equivalence:

$[0, 1]$ is nonstandard compact (STP)

\iff

Every ns-cont. function is ns-Riemann integrable on $[0, 1]$
The unreasonable effectiveness of NSA

Example V: Compactness

X is nonstandard compact IFF $(\forall x \in X)(\exists^{st} y \in X)(x \approx y)$.

From a proof in P of the following equivalence:

$$[0, 1] \text{ is nonstandard compact} \quad \text{(STP)}$$

\iff

Every ns-cont. function is ns-Riemann integrable on $[0, 1]$

two terms u, v can be extracted such that $E-PA^\omega$ proves
The unreasonable effectiveness of NSA

Example V: Compactness

X is nonstandard compact IFF $(\forall x \in X)(\exists^{st} y \in X)(x \approx y)$.

From a proof in P of the following equivalence:

$[0, 1]$ is nonstandard compact

\iff

Every ns-cont. function is ns-Riemann integrable on $[0, 1]$ (STP)

two terms u, v can be extracted such that $E\text{-PA}^\omega$ proves

If Ω^3 is the fan functional, then $u(\Omega)$ computes the Riemann integral for any cont. function on $[0, 1]$.

The unreasonable effectiveness of NSA

Example V: Compactness

X is nonstandard compact IFF $(\forall x \in X)(\exists^{st} y \in X)(x \approx y)$.

From a proof in P of the following equivalence:

$[0, 1]$ is nonstandard compact (STP)

\iff

Every ns-cont. function is ns-Riemann integrable on $[0, 1]$

two terms u, v can be extracted such that $E-PA^\omega$ proves

If Ω^3 is the fan functional, then $u(\Omega)$ computes the Riemann integral for any cont. function on $[0, 1]$.

If $\psi^{(1\rightarrow1)\rightarrow1}$ computes the Riemann integral for any. cont function on $[0, 1]$, then $v(\psi)$ is the fan functional.
The unreasonable effectiveness of NSA

Example V: Compactness

X is nonstandard compact IFF $(\forall x \in X)(\exists^{st} y \in X)(x \approx y)$.

From a proof in P of the following equivalence:

\[[0, 1] \text{ is nonstandard compact } \quad \leftrightarrow \quad \text{(STP)} \]

\[\iff \]

Every ns-cont. function is ns-Riemann integrable on $[0, 1]$.

two terms u, v can be extracted such that $E-PA^\omega$ proves

If Ω^3 is the fan functional, then $u(\Omega)$ computes the Riemann integral for any cont. function on $[0, 1]$.

If $\psi^{(1 \to 1) \to 1}$ computes the Riemann integral for any cont. function on $[0, 1]$, then $v(\psi)$ is the fan functional.

$= \text{ the EXPLICIT version of } FAN \leftrightarrow (\text{cont } \to \text{ Rieman int. on } [0, 1])$.
The unreasonable effectiveness of NSA

Example VI: Compactness bis
Compactness has multiple non-equivalent normal forms.
The unreasonable effectiveness of NSA

Example VI: Compactness bis
Compactness has multiple non-equivalent normal forms. In Example V, the normal form of ns-compactness was a nonstandard version of FAN.
The unreasonable effectiveness of NSA

Example VI: Compactness bis

Compactness has multiple non-equivalent normal forms. In Example V, the normal form of ns-compactness was a nonstandard version of FAN. Here, the normal form expresses ‘the space can be discretely divided into infinitesimal pieces’.
The unreasonable effectiveness of NSA

Example VI: Compactness bis
Compactness has multiple non-equivalent normal forms. In Example V, the normal form of ns-compactness was a nonstandard version of FAN. Here, the normal form expresses ‘the space can be discretely divided into infinitesimal pieces’.

From a proof in P of the following theorem

For a uniformly ns-cont. f and ns-compact X, $f(X)$ is also ns-compact.
The unreasonable effectiveness of NSA

Example VI: Compactness bis

Compactness has multiple non-equivalent normal forms. In Example V, the normal form of ns-compactness was a nonstandard version of FAN. Here, the normal form expresses ‘the space can be discretely divided into infinitesimal pieces’.

From a proof in P of the following theorem

For a uniformly ns-cont. \(f \) and ns-compact \(X \), \(f(X) \) is also ns-compact.
The unreasonable effectiveness of NSA

Example VI: Compactness bis
Compactness has multiple non-equivalent normal forms. In Example V, the normal form of ns-compactness was a nonstandard version of FAN. Here, the normal form expresses ‘the space can be discretely divided into infinitesimal pieces’.

From a proof in P of the following theorem

For a uniformly ns-cont. f and ns-compact X, $f(X)$ is also ns-compact.

a term u can be extracted such that E-PA$^\omega$ proves

If Ψ witnesses that X is totally bounded and g is a modulus of uniform cont. for f, then $u(\Psi, g)$ witnesses that $f(X)$ is totally bounded.
The unreasonable effectiveness of NSA

Example VI: Compactness bis
Compactness has multiple non-equivalent normal forms. In Example V, the normal form of ns-compactness was a nonstandard version of FAN. Here, the normal form expresses ‘the space can be discretely divided into infinitesimal pieces’.

From a proof in P of the following theorem

For a uniformly ns-cont. f and ns-compact X, $f(X)$ is also ns-compact.

a term u can be extracted such that E-PA^ω proves

If Ψ witnesses that X is totally bounded and g is a modulus of uniform cont. for f, then $u(\Psi, g)$ witnesses that $f(X)$ is totally bounded.

...which is a theorem from constructive analysis and comp. math.
Conclusion

Nonstandard Analysis is unreasonably effective as follows:
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.

b) **TERM EXTRACTION** works for **HUGE** class ‘theorems of pure NSA’
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.

b) TERM EXTRACTION works for HUGE class ‘theorems of pure NSA’

In particular:
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.

b) TERM EXTRACTION works for HUGE class ‘theorems of pure NSA’

In particular:

a) Observation: Every theorem of pure NSA can be brought into the normal form \((\forall^\text{st} x)(\exists^\text{st} y)\varphi(x, y) \) (\(\varphi \) internal).
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.

b) TERM EXTRACTION works for HUGE class ‘theorems of pure NSA’

In particular:

a) Observation: Every theorem of pure NSA can be brought into the normal form \((\forall^\text{st} x)(\exists^\text{st} y) \varphi(x, y)\) (\(\varphi\) internal).

b) P has the TERM EXTRACTION property for normal forms:
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.

b) TERM EXTRACTION works for HUGE class ‘theorems of pure NSA’

In particular:

a) Observation: Every theorem of pure NSA can be brought into the normal form \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\) (\(\varphi\) internal).

b) P has the TERM EXTRACTION property for normal forms:

If P proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\), then from the latter proof, a term \(t\) can be extracted such that E-PA\(^{\omega}\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)
Conclusion

Nonstandard Analysis is unreasonably effective as follows:

a) Focus on theorems of pure NSA, i.e. involving the nonstandard definitions of continuity, differentiation, Riemann integration, compactness, open sets, et cetera.

b) TERM EXTRACTION works for HUGE class ‘theorems of pure NSA’

In particular:

a) Observation: Every theorem of pure NSA can be brought into the normal form \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\) (\(\varphi\) internal).

b) P has the TERM EXTRACTION property for normal forms:

If P proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\), then from the latter proof, a term \(t\) can be extracted such that E-PA\(^\omega\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)

Thus, NSA provides a ‘computational foundation’ (for sosoal).
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

$$(\forall f: \mathbb{R} \to \mathbb{R}) \left((\forall x, y \in [0, 1]) [x \approx y \to f(x) \approx f(y)] \right) \downarrow (4)$$

we can extract terms i, o such that for all $f, g: \mathbb{R} \to \mathbb{R}$, and $\varepsilon' > 0$:

$$(\forall x, y \in [0, 1], \varepsilon > i(g, \varepsilon')) ((|x - y| < g(\varepsilon) \to |f(x) - f(y)| < \varepsilon)) \downarrow (5)$$

$$(\forall \pi, \pi' \in P([0, 1])) (\|\pi\|, \|\pi'\| < o(g, \varepsilon') \to |S_\pi(f) - S_{\pi'}(f)| \leq \varepsilon')$$

is provable in $E-\text{PA}_\omega$, AND VICE VERSA: if $E-\text{PA}_\omega \vdash (5)$, then $P \vdash (4)$

(5) is a thm from numerical analysis, called HERBRANDISATION of (4)

Every theorem of pure NSA has such a 'meta-equivalent' Hebrandisation.
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

\[
(∀f: \mathbb{R} → \mathbb{R})\left[∀x, y ∈ [0, 1], x \approx y → f(x) \approx f(y)\right]
\]

↓ (4)

\[
(∀π, π′ ∈ P([0, 1]))\left(∥π∥, ∥π′∥ ≈ 0 → S_{π}(f) \approx S_{π′}(f)\right),
\]

we can extract terms i, o such that for all $f, g: \mathbb{R} → \mathbb{R}$, and $ε′ > 0$:

\[
(∀x, y ∈ [0, 1], ε > i(g, ε′))\left(∥x − y∥ < g(ε) → ∥f(x) − f(y)∥ < ε\right)
\]

↓ (5)

\[
(∀π, π′ ∈ P([0, 1]))\left(∥π∥, ∥π′∥ < o(g, ε′) → |S_{π}(f) − S_{π′}(f)| ≤ ε′\right)
\]

is provable in $E-\text{PA}_ω$, AND VICE VERSA: if $E-\text{PA}_ω \vdash (5)$, then $P \vdash (4)$

(5) is a thm from numerical analysis, called HERBRANDISATION of (4)

Every theorem of pure NSA has such a 'meta-equivalent' Hebrandisation.
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

$$(\forall f : \mathbb{R} \rightarrow \mathbb{R}) [(\forall x, y \in [0, 1])[x \approx y \rightarrow f(x) \approx f(y)]]$$

\downarrow

$$(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \rightarrow S_\pi(f) \approx S_{\pi'}(f)),$$

is provable in $E-\text{PA}_\omega$, AND VICE VERSA: if $E-\text{PA}_\omega \vdash (5)$, then $P \vdash (4)$

(5) is a thm from numerical analysis, called HERBRANDISATION of (4).

Every theorem of pure NSA has such a 'meta-equivalent' Hebrandisation.
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

$$(\forall f : \mathbb{R} \to \mathbb{R})[(\forall x, y \in [0, 1])[x \approx y \to f(x) \approx f(y)]$$

$$\downarrow$$

$$(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \to S_{\pi}(f) \approx S_{\pi'}(f))]$$

we can extract terms i, o such that for all $f, g : \mathbb{R} \to \mathbb{R}$, and $\varepsilon' > 0$:

$$(\forall x, y \in [0, 1], \varepsilon > i(g, \varepsilon'))(|x - y| < g(\varepsilon) \to |f(x) - f(y)| < \varepsilon)$$

$$\downarrow$$

$$(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < o(g, \varepsilon') \to |S_{\pi}(f) - S_{\pi'}(f)| \leq \varepsilon')$$
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

\[(\forall f : \mathbb{R} \rightarrow \mathbb{R})[(\forall x, y \in [0, 1])[x \approx y \rightarrow f(x) \approx f(y)]]\]

\[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \rightarrow S_{\pi}(f) \approx S_{\pi'}(f))\] \hspace{1cm} (4)

we can extract terms \(i, o\) such that for all \(f, g : \mathbb{R} \rightarrow \mathbb{R},\) and \(\varepsilon' > 0:\)

\[(\forall x, y \in [0, 1], \varepsilon > i(g, \varepsilon'))(|x - y| < g(\varepsilon) \rightarrow |f(x) - f(y)| < \varepsilon)\]

\[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < o(g, \varepsilon') \rightarrow |S_{\pi}(f) - S_{\pi'}(f)| \leq \varepsilon')\] \hspace{1cm} (5)

is provable in E-PA\(^\omega\),
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

$$(\forall f : \mathbb{R} \rightarrow \mathbb{R}) \left[(\forall x, y \in [0, 1])[x \approx y \rightarrow f(x) \approx f(y)] \right]$$

$$(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \rightarrow S_\pi(f) \approx S_{\pi'}(f)) \right]$$

we can extract terms i, o such that for all $f, g : \mathbb{R} \rightarrow \mathbb{R}$, and $\varepsilon' > 0$:

$$(\forall x, y \in [0, 1], \varepsilon > i(g, \varepsilon'))(|x - y| < g(\varepsilon) \rightarrow |f(x) - f(y)| < \varepsilon)$$

$$(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < o(g, \varepsilon') \rightarrow |S_\pi(f) - S_{\pi'}(f)| \leq \varepsilon')$$

is provable in E-PA^ω, AND VICE VERSA: if $\text{E-PA}^\omega \vdash (5)$, then $P \vdash (4)$
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

\[(\forall f : \mathbb{R} \to \mathbb{R}) [(\forall x, y \in [0, 1])[x \approx y \to f(x) \approx f(y)]] \]

\[\downarrow\]

\[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \to S_\pi(f) \approx S_{\pi'}(f))]\]

we can extract terms \(i, o\) such that for all \(f, g : \mathbb{R} \to \mathbb{R}\), and \(\varepsilon' > 0\):

\[(\forall x, y \in [0, 1], \varepsilon > i(g, \varepsilon'))(|x - y| < g(\varepsilon) \to |f(x) - f(y)| < \varepsilon)\]

\[\downarrow\]

\[(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < o(g, \varepsilon') \to |S_\pi(f) - S_{\pi'}(f)| \leq \varepsilon')\]

is provable in E-PA\(^\omega\), AND VICE VERSA: if E-PA\(^\omega\) \vdash (5), then P \vdash (4)

(5) is a thm from numerical analysis, called HERBRANDISATION of (4)
Towards meta-equivalence: Hebrandisations

From a proof that nonstandard uniformly continuity implies nonstandard Riemann integration in P, i.e.

\[
(\forall f : \mathbb{R} \to \mathbb{R})[(\forall x, y \in [0, 1])[x \approx y \to f(x) \approx f(y)]\\
\downarrow\\
(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| \approx 0 \to S_{\pi}(f) \approx S_{\pi'}(f))]
\]

(4)

we can extract terms \(i, o\) such that for all \(f, g : \mathbb{R} \to \mathbb{R}\), and \(\varepsilon' > 0\):

\[
(\forall x, y \in [0, 1], \varepsilon > i(g, \varepsilon'))(|x - y| < g(\varepsilon) \to |f(x) - f(y)| < \varepsilon)\\
\downarrow\\
(\forall \pi, \pi' \in P([0, 1]))(\|\pi\|, \|\pi'\| < o(g, \varepsilon') \to |S_{\pi}(f) - S_{\pi'}(f)| \leq \varepsilon')
\]

(5)

is provable in E-PA\(^{\omega}\), AND VICE VERSA: if E-PA\(^{\omega}\) \(\vdash\) (5), then P \(\vdash\) (4)

(5) is a thm from numerical analysis, called HERBRANDISATION of (4)

Every theorem of pure NSA has such a ‘meta-equivalent’ Hebrandisation.
Application I: Cutting out the middle man in vagueness
Application I: Cutting out the middle man in vagueness

The predicate ‘\(\approx\)’ is the text-book formalisation of the vague notion ‘nearness’.
Application I: Cutting out the middle man in vagueness

The predicate ‘\(\approx\)’ is the text-book formalisation of the vague notion ‘nearness’.

Literally: ‘\(\approx\)’ from NSA has been used as a foundation for modelling vague predicates like nearness in AI, fuzzy set theory, and optimisation and control.
Application I: Cutting out the middle man in vagueness

The predicate ‘≈’ is the text-book formalisation of the vague notion ‘nearness’.

Literally: ‘≈’ from NSA has been used as a foundation for modelling vague predicates like nearness in AI, fuzzy set theory, and optimisation and control.

\[(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y))\]

Continuity in physics: If \(x, y\) are ‘very close’, so are their images.
Application I: Cutting out the middle man in vagueness

The predicate ‘\(\approx\)’ is the text-book formalisation of the vague notion ‘nearness’.

Literally: ‘\(\approx\)’ from NSA has been used as a foundation for modelling vague predicates like nearness in AI, fuzzy set theory, and optimisation and control.

\[
(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y))
\]

Continuity in physics: If \(x, y\) are ‘very close’, so are their images.

However, an ‘expert’ has to come in and say what ‘\(\approx\)’ should mean in every particular context.
Application I: Cutting out the middle man in vagueness

The predicate ‘\approx’ is the text-book formalisation of the vague notion ‘nearness’.

Literally: ‘\approx’ from NSA has been used as a foundation for modelling vague predicates like nearness in AI, fuzzy set theory, and optimisation and control.

$$(\forall x, y \in [0, 1])(x \approx y \rightarrow f(x) \approx f(y))$$

Continuity in physics: If x, y are ‘very close’, so are their images.

However, an ‘expert’ has to come in and say what ‘\approx’ should mean in every particular context.

Using Herbrandisations, we can faithfully remove vagueness (like near, large, small, etc) from mathematical statements in the applied sciences without the involvement of experts.
Application I: Cutting out the middle man in vagueness

The predicate ‘≈’ is the text-book formalisation of the vague notion ‘nearness’.

Literally: ‘≈’ from NSA has been used as a foundation for modelling vague predicates like nearness in AI, fuzzy set theory, and optimisation and control.

\[(∀x, y ∈ [0, 1])(x ≈ y → f(x) ≈ f(y))\]

Continuity in physics: If \(x, y\) are ‘very close’, so are their images.

However, an ‘expert’ has to come in and say what ‘≈’ should mean in every particular context.

Using Herbrandisations, we can faithfully remove vagueness (like near, large, small, etc) from mathematical statements in the applied sciences without the involvement of experts. (Sorites)
Application II: Nominalism and poetic justice
Application II: Nominalism and poetic justice

Bishop, founder of Constructive Analysis, anticipated Herbrandisations...

Actually, the development of this particular example should not stop here, because whenever you have a theorem: $B \rightarrow A$, then you suspect that you have a theorem: B is approximately true $\rightarrow A$ is approximately true. So there should be an even further development of this theory, namely to say what we mean for B to be approximately true, and then we have conjectured an implication, which we should try to prove. I have not done this, but it occurred to me while preparing this talk that the conjecture is clear enough. I shall not take the time to present it here.
Application II: Nominalism and poetic justice

Bishop, founder of Constructive Analysis, anticipated Herbrandisations...

Actually, the development of this particular example should not stop here, because whenever you have a theorem: $B \rightarrow A$, then you suspect that you have a theorem: B is approximately true $\rightarrow A$ is approximately true. So there should be an even further development of this theory, namely to say what we mean for B to be approximately true, and then we have conjectured an implication, which we should try to prove. I have not done this, but it occurred to me while preparing this talk that the conjecture is clear enough. I shall not take the time to present it here.

on the same page of *Historia Mathematica* he trashes NSA.

A more recent attempt at mathematics by formal finesse is non-standard analysis. I gather that it has met with some degree of success, whether at the expense of giving significantly less meaningful proofs I do not know. My interest in non-standard analysis is that attempts are being made to introduce it into calculus courses. It is difficult to believe that debasement of meaning could be carried so far.
Application II: Nominalism and poetic justice

In general, nominalism about infinitesimals seems meaningless in light of Herbrandisations.
Application II: Nominalism and poetic justice

In general, nominalism about infinitesimals seems meaningless in light of Herbrandisations.

Herbrandisations lead to a rather structuralist view of mathematics:

The objects of mathematics do not matter, but mathematical structures do.
Application II: Nominalism and poetic justice

In general, nominalism about infinitesimals seems meaningless in light of Herbrandisations.

Herbrandisations lead to a rather structuralist view of mathematics:

The objects of mathematics do not matter, but mathematical structures do.

In particular, Herbrandisations give a way of talking ‘directly’ about Nonstandard Analysis in the standard model.
Application II: Nominalism and poetic justice

In general, nominalism about infinitesimals seems meaningless in light of Herbrandisations.

Herbrandisations lead to a rather **structuralist** view of mathematics:

The objects of mathematics do not matter, but mathematical structures do.

In particular, Herbrandisations give a way of talking ‘directly’ about Nonstandard Analysis in the standard model.

‘directly’ means that the meta-equivalence between a nonstandard thm and its Herbrandisation is acceptable to the finitist/constructivist.
Application III: Frege’s Sinn und bedeutung
Application III: Frege’s Sinn und bedeutung

Bedeutung \approx the object to which a term refers.

Sinne \approx the way a term refers to an object
Application III: Frege’s Sinn und bedeuting

Bedeutung \approx the object to which a term refers.

Sinne \approx the way a term refers to an object

Clark Kent and Superman refer to the same person (same Bedeutung). However, they do so in a very different way (different Sinne)
Application III: Frege’s Sinn und bedeuting

Bedeutung ≈ the object to which a term refers.

Sinne ≈ the way a term refers to an object

Clark Kent and Superman refer to the same person (same Bedeutung). However, they do so in a very different way (different Sinne)

The nonstandard theorem = the Bedeutung

The Hebrandisation/numerical version = the Sinne
Application III: Frege’s Sinn und bedeuting

Bedeutung \approx the object to which a term refers.

Sinne \approx the way a term refers to an object

Clark Kent and Superman refer to the same person (same Bedeutung). However, they do so in a very different way (different Sinne)

The nonstandard theorem $=$ the Bedeutung

The Hebrandisation/numerical version $=$ the Sinne

Note that the numerical version is satisfied by infinitely many terms i, o.
Mining standard proofs

Question: Can you also mine proofs not involving NSA?
Mining standard proofs

Question: Can you also mine proofs not involving NSA? Answer: Yes, but...!
Mining standard proofs

Question: Can you also mine proofs not involving NSA? Answer: Yes, but...!

The Ferreira-Gaspar system M (APAL2015) is similar to P but based on strong majorizability (Bezem-Howard).
Mining standard proofs

Question: Can you also mine proofs not involving NSA? Answer: Yes, but...!

The Ferreira-Gaspar system M (APAL2015) is similar to P but based on strong majorizability (Bezem-Howard).

System M satisfies Kohlenbach’s non-classical uniform boundedness principles.
Question: Can you also mine proofs not involving NSA? Answer: Yes, but...!

The Ferreira-Gaspar system M (APAL2015) is similar to P but based on strong majorizability (Bezem-Howard).

System M satisfies Kohlenbach’s non-classical uniform boundedness principles. As a consequence, M believes ‘\(\varepsilon-\delta\)’ and nonstandard definitions are equivalent.
Mining standard proofs

Question: Can you also mine proofs not involving NSA? Answer: Yes, but...!

The Ferreira-Gaspar system M (APAL2015) is similar to P but based on strong majorizability (Bezem-Howard).

System M satisfies Kohlenbach’s non-classical uniform boundedness principles. As a consequence, M believes ‘ε-δ’ and nonstandard definitions are equivalent.

Thus, one can ‘indirectly’ mine proofs from $\text{E-PA}^\omega + \text{WKL}$ not involving NSA inside M.
Mining standard proofs

Question: Can you also mine proofs not involving NSA? Answer: Yes, but…!

The Ferreira-Gaspar system M (APAL2015) is similar to P but based on strong majorizability (Bezem-Howard).

System M satisfies Kohlenbach’s non-classical uniform boundedness principles. As a consequence, M believes ‘ε-δ’ and nonstandard definitions are equivalent.

Thus, one can ‘indirectly’ mine proofs from $\text{E-PA}^\omega + \text{WKL}$ not involving NSA inside M.

Warning: Term extraction using M often produces vacuous truths (always for theorems requiring arithmetical comprehension).
Impredicative, predicative and ... locally constructive
Impredicative, predicative and . . . locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\)-CA\(_0\):

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \leftrightarrow (\exists g^1)(\forall n^0)(f(\overline{g}n) = 0)]. \tag{S^2}
\]
Impredicative, predicative and . . . locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\text{-CA}_0\):

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \iff (\exists g^1)(\forall n^0)(f(\overline{g}n) = 0)]. \quad (S^2)
\]

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from Gödel’s T):

\[
\]
Impredicative, predicative and . . . locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\)-CA\(_0\):

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \leftrightarrow (\exists g^1)(\forall n^0)(f(\overline{g}n) = 0)].
\]

\((S^2)\)

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from Gödel’s T):

If \(P + (S^2)\) proves \((\forall x)(\exists y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\)-PA\(^\omega\) + \((S^2)\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)
Impredicative, predicative and . . . locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\)-CA_0:

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \iff (\exists g^1)(\forall n^0)(f(\overline{g}n) = 0)].
\]

\((S^2)\)

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from Gödel’s T):

If \(P + (S^2)\) proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\)-PA\(^\omega\) + \((S^2)\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)

HOWEVER:

If \(P + (S^2)^{st}\) proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\)-PA\(^\omega\) + \((S^2)\) proves \((\forall x)(\exists y \in t(x, S))\varphi(x, y)\)
Impredicative, predicative and . . . locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\text{-CA}_0\):

\[(\exists S^2)(\forall f^1)[S(f) = 0 \leftrightarrow (\exists g^1)(\forall n^0)(f(\overline{g}n) = 0)]. \quad (S^2)\]

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from Gödel’s T):

If \(P + (S^2)\) proves \((\forall^\ast x)(\exists^\ast y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E-PA^\omega + (S^2)\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)

HOWEVER:

If \(P + (S^2)^{st}\) proves \((\forall^\ast x)(\exists^\ast y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E-PA^\omega + (S^2)\) proves \((\forall x)(\exists y \in t(x, S))\varphi(x, y)\)

Standard objects in \(P\) and \(H\) are those which are computationally relevant
Impredicative, predicative and \ldots locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\)-CA\(_0\):

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \leftrightarrow (\exists g^1)(\forall n^0)(f(\overline{g}n) = 0)]. \quad (S^2)
\]

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from G"odel’s T):

If \(P + (S^2)\) proves \((\forall^{st}x)(\exists^{st}y)\varphi(x, y)\), then a term \(t\) from G"odel’s T can be extracted such that \(E\text{-PA}^\omega + (S^2)\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)

HOWEVER:

If \(P + (S^2)^{st}\) proves \((\forall^{st}x)(\exists^{st}y)\varphi(x, y)\), then a term \(t\) from G"odel’s T can be extracted such that \(E\text{-PA}^\omega + (S^2)\) proves \((\forall x)(\exists y \in t(x, S))\varphi(x, y)\)

Standard objects in \(P\) and \(H\) are those which are computationally relevant (cf. Berger’s uniform HA and Lifschitz’s calculable numbers)
Impredicative, predicative and \ldots locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi^1_1\text{-}CA_0\):

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \leftrightarrow (\exists g^1)(\forall n^0)(f(\overline{gn}) = 0)].
\]
\((S^2)\)

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from Gödel’s T):

If \(P + (S^2)\) proves \((\forall^{st}x)(\exists^{st}y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\text{-}PA^\omega + (S^2)\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)

HOWEVER:

If \(P + (S^2)^{st}\) proves \((\forall^{st}x)(\exists^{st}y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\text{-}PA^\omega + (S^2)\) proves \((\forall x)(\exists y \in t(x, S))\varphi(x, y)\)

Standard objects in P and H are those which are computationally relevant (cf. Berger’s uniform HA and Lifschitz’s calculable numbers)

RM: \((S^2)\) is equivalent to ‘all sets are located’.
Impredicative, predicative and \ldots locally constructive

The Suslin functional \((S^2)\) is the functional version of \(\Pi_1^1\)-CA\(_0\):

\[
(\exists S^2)(\forall f^1)[S(f) = 0 \leftrightarrow (\exists g^1)(\forall n^0)(f(gn) = 0)]. \quad (S^2)
\]

The system \(P + (S^2)\) is impredicative, but its term extraction produces predicative results (terms from Gödel’s T):

If \(P + (S^2)\) proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\)-PA\(\omega\) + \((S^2)\) proves \((\forall x)(\exists y \in t(x))\varphi(x, y)\)

HOWEVER:

If \(P + (S^2)^{st}\) proves \((\forall^{st} x)(\exists^{st} y)\varphi(x, y)\), then a term \(t\) from Gödel’s T can be extracted such that \(E\)-PA\(\omega\) + \((S^2)\) proves \((\forall x)(\exists y \in t(x, S))\varphi(x, y)\)

Standard objects in \(P\) and \(H\) are those which are computationally relevant (cf. Berger’s uniform HA and Lifschitz’s calculable numbers)

RM: \((S^2)\) is equivalent to ‘all sets are located’. We can replace locatedness by \((S^2)\), while still obtaining computational info!
Final Thoughts
Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan
Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

‘...there are good reasons to believe that nonstandard analysis, in some version or other, will be the analysis of the future.’

Kurt Gödel
Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

‘. . . there are good reasons to believe that nonstandard analysis, in some version or other, will be the analysis of the future.’

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von Humboldt Foundation for their generous support!
Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

‘...there are good reasons to believe that nonstandard analysis, in some version or other, will be the analysis of the future.’

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!
Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

‘...there are good reasons to believe that nonstandard analysis, in some version or other, will be the analysis of the future.’

Kurt Gödel

We thank the [John Templeton Foundation](https://www.templeton.org/) and [Alexander Von Humboldt Foundation](https://www.humboldt-foundation.org/) for their generous support!

Thank you for your attention!

Any questions?